
McPAD : A Multiple Classifier System for

Accurate Payload-based Anomaly Detection

Roberto Perdisci a,b, Davide Ariu c, Prahlad Fogla d,

Giorgio Giacinto c, and Wenke Lee b

aDamballa, Inc., Atlanta, 30308 GA, USA

bCollege of Computing, Georgia Institute of Technology, Atlanta, 30308 GA, USA

cUniversity of Cagliari, 09123 Cagliari, Italy

dGoogle, Inc. Mountain View, CA 94043, USA

Abstract

Anomaly-based network Intrusion Detection Systems (IDS) are valuable tools
for the defense-in-depth of computer networks. Unsupervised or unlabeled learn-
ing approaches for network anomaly detection have been recently proposed. Such
anomaly-based network IDS are able to detect (unknown) zero-day attacks, al-
though much care has to be dedicated to controlling the amount of false positives
generated by the detection system. As a matter of fact, it is has been shown [2] that
the false positive rate is the true limiting factor for the performance of IDS, and that
in order to substantially increase the Bayesian detection rate, P (Intrusion|Alarm),
the IDS must have a very low false positive rate (e.g., as low as 10−5 or even lower).

In this paper we present McPAD (Multiple-Classifier Payload-based Anomaly
Detector), a new accurate payload-based anomaly detection system that consists
of an ensemble of one-class classifiers. We show that our anomaly detector is very
accurate in detecting network attacks that bear some form of shell-code in the ma-
licious payload. This holds true even in the case of polymorphic attacks and for
very low false positive rates. Furthermore, we experiment with advanced polymor-

phic blending attacks and we show that in some cases even in the presence of such
sophisticated attacks and for a low false positive rate our IDS still has a relatively
high detection rate.

Key words: Network Intrusion Detection, Anomaly Detection, Shell-Code
Attacks, Multiple Classifiers, One-Class SVM

Preprint submitted to Elsevier Science 18 November 2008

1 Introduction

Intrusion Detection Systems (IDS) are valuable tools for the defense-in-depth
of computer networks. Network IDS look for known or potential malicious
activities in network traffic and raise an alarm whenever a suspicious activity is
detected. Two main approaches to intrusion detection are used, namely misuse
and anomaly detection [25]. Misuse detectors are based on a description of
known malicious activities. This description is often modeled as a set of rules
referred to as attack signatures. Activities that match an attack signature
are classified as malicious. On the other hand, anomaly detectors are based
on a description of normal or benign activities. As malicious activities are
expected to be different from normal activities, a suitable distance measure
allows anomaly-based IDS to detect attack traffic.

The IDS most commonly used in real networks are signature-based, because
they are able to efficiently detect known attacks while generating a rela-
tively low number of false positives. Anomaly-based detection systems usu-
ally produce a relatively higher number of false positives, compared to the
misuse-based or signature-based detection systems, because only a fraction of
the anomalous traffic actually derives from intrusion attempts. Nevertheless,
anomaly detectors are able to detect zero-day (i.e., never-before-seen) attacks,
whereas signature-based systems are not.

Because it is very difficult and expensive to obtain a labeled dataset that is
representative of real network activities and contains both normal and at-
tack traffic [24], unsupervised or unlabeled learning approaches for network
anomaly detection have been recently proposed [27, 12]. These methods aim
to work on datasets of traffic extracted from real networks without the ne-
cessity of a labeling process. Unlabeled anomaly detection systems are based
on the reasonable assumption that the percentage of attack patterns in the
extracted traffic traces is usually much lower than the percentage of normal
patterns [27]. Furthermore, it is possible to use signature-based IDS in order
to filter the extracted traffic by removing the known attacks, thus further re-
ducing the number of attack patterns possibly present in the dataset. Another
assumption is that the attack patterns are supposed to be distinguishable from
the normal patterns in a suitable feature space. The term “unlabeled anomaly
detection” used in the intrusion detection field actually refers to what in ma-
chine learning is more often called “novelty detection”, “outlier detection”
or “one-class classification”. One-class classification algorithms pursue con-
cept learning in absence of counter examples [31], and have been shown to be
promising for network anomaly detection [12].

2

1.1 Payload-based Anomaly Detection

Recent work on unlabeled anomaly detection focused on high speed classifica-
tion based on simple payload statistics [19, 23, 35, 36] (the payload is the data
portion of a network packet). For example, PAYL [35, 36] extracts 256 features
from the payload. Each feature represents the occurrence frequency in the pay-
load of one of the 256 possible byte values. A simple model of normal traffic is
then constructed by computing the average and standard deviation of each fea-
ture. A payload is considered anomalous if a simplified Mahalanobis distance
between the payload under test and the model of normal traffic exceeds a pre-
determined threshold. Although PAYL is based on simple statistics extracted
from the payload, it has been shown to be quite effective [35]. Nonetheless, we
show in Section 5 that PAYL may suffer from a relatively high false positive
rate. Wang et al. [35] also proposed a more generic n-gram 1 version of PAYL.
A sliding window of length n is used to extract the occurrence frequency in
the payload of all the possible n-grams. In this case the payload is described
by a pattern vector in a 256n-dimensional feature space. The n-grams extract
byte sequence information, which helps in constructing a more precise model
of the normal traffic compared to the simple byte frequency-based model. The
extraction of n-gram statistics from the payload can be performed efficiently
and the IDS can be used to monitor high speed links in real time. However,
given the exponentially growing number of extracted features, the higher n
the more difficult it may be to construct an accurate model because of the
curse of dimensionality and possible computational complexity problems.

Wang et al. also proposed ANAGRAM [37], an anomaly detector based on n-
gram analysis that uses a different approach for modeling the traffic, compared
to PAYL. ANAGRAM stores the distinct n-grams extracted from normal pack-
ets in a Bloom filter b1, and the n-grams extracted from known attacks in a
second Bloom filter b2. During the test phase, for each packet all the distinct
n-grams are extracted from the payload and compared with the filters b1 and
b2. Payloads that contain too many n-grams that are not present in b1 or that
are present in b2 are classified as anomalous [37]. Other anomaly detection
systems based on more complex features have been proposed [33, 5]. These
anomaly detectors involve the extraction of syntax and semantic information
from the payload, which is usually a computationally expensive task. There-
fore, it may not be possible to use this approach in order to analyze network
traffic on high speed links in real time.

1 Here an n-gram represents n consecutive bytes in the payload

3

1.2 Our Contribution: McPAD

In [2], Axelsson has shown that the false positive rate is the true limiting factor
for the performance of IDS, and that in order to substantially increase the
Bayesian detection rate, P (Intrusion|Alarm) (i.e., the probability of having
an intrusion given that an alarm was raised), the false positive rate of the IDS
must be very low (e.g., as low as 10−5 or even lower). Although fairly effective,
payload-based anomaly detectors like PAYL [35] suffer from a relatively high
false positive rate, and may therefore have a very low Bayesian detection rate.

Our goal is to devise a new payload-based anomaly detector that uses simple
payload statistics to accurately detect network attacks, and in particular shell-
code attacks [1] (i.e., attacks that inject executable code), even at a very low
false positive rate. We address these challenge using an ensemble of classifiers.
Classifier ensembles, often referred to as Multiple Classifier Systems (MCS),
have been proved to achieve a better trade-off between false positive and
detection rate in many applications, compared to the best single classifier in
the ensemble [10, 20]. A number of security related applications of MCS have
been proposed in the literature. For example, MCS are used in multimodal
biometrics for hardening person identification [4], and in misuse-based IDS [16]
to improve the detection accuracy.

MCS attain accuracy improvements when the combined classifiers are “di-
verse”, i.e., they make different (ideally independent) errors on new pat-
terns [10]. A way to induce diversity is to combine classifiers that are based on
descriptions of the patterns in different feature spaces [20]. The combination of
classifiers trained on different feature spaces allows us to effectively exploit the
complementarities of the different pattern representations [10]. In [26] we pro-
posed a new approach to construct a high speed payload-based anomaly IDS
by combining multiple one-class Support Vector Machine (SVM) classifiers
using a majority voting rule. As mentioned in Section 1.1, n-gram analysis
has been shown to be quite effective for payload-based anomaly detection.
However, the exponential increase of the dimensionality of the features space
may make it hard to accurately model the normal traffic for values of n > 2.
In order to solve this problem, we proposed a new technique to extract the
features from the payload that is similar to the 2-gram technique [26]. Instead
of measuring the frequency of the pairs of consecutive bytes, we proposed to
measure the features by using a sliding window that “covers” two bytes which
are ν positions apart from each other in the payload. We refer to these pairs
of bytes as 2ν-grams. The proposed feature extraction process does not add
any complexity with respect to the traditional 2-gram technique and can be
performed efficiently. We also showed that the proposed technique allows us to
“summarize” the occurrence frequency of n-grams, with n > 2, thus captur-
ing byte sequence information while limiting the dimensionality of the feature

4

space. By varying the parameter ν, we constructed a representation of the
payload in different feature spaces. Also, we adapted a feature clustering al-
gorithm originally proposed in [9] to one-class problems, and used it to reduce
the dimensionality of the different feature spaces where the payload is repre-
sented. We obtained high detection accuracy at very low false positive rate
by constructing our anomaly-based IDS, which we called McPAD (Multiple-
classifier Payload-based Anomaly Detector), using a combination of multiple
one-class SVM classifiers that work on these different feature spaces.

In this paper we extend the results reported in [26]. We present a much deeper
analysis of our anomaly detection system and its capabilities regarding detec-
tion accuracy for shell-code attacks [1] and polymorphic shell-code attacks [30].
Shell-code attacks are among the most dangerous kinds of network attacks be-
cause they carry executable malicious code that can hijack the normal execu-
tion of the target vulnerable application. When successful, shell-code attacks
often allow the attacker to gain complete control of the victim machine. Poly-
morphic shell-code attacks automatically create new variants of the attack
code before sending the actual intrusion attempt to a new victim, and are
therefore very difficult to detect using signature-based IDS [30].

We experiment with different classifier combination schemes on large datasets
of both normal traffic and attacks. In particular, we perform experiments on
the first week of traffic from the DARPA’99 dataset [22], and on seven days
of real HTTP traffic collected at an academic institution. As attack dataset,
we use a large dataset of “standard” HTTP attacks provided by the authors
of [17], which is publicly available. Furthermore, we construct a large number
of polymorphic attacks, which include attacks generated with the polymorphic
shell-code engine CLET [8], a set of Polymorphic Blending Attacks (PBA) [14,
13] designed to evade PAYL [35], and a set of PBA specifically designed with
the intent to evade our detection system. We compare McPAD to PAYL [35],
and we show that our IDS has a much higher detection accuracy than PAYL
on shell-code attacks at low false positive rates, and is in some cases resistant
to even the sophisticated polymorphic blending attacks specifically designed to
evade it. Furthermore, we released the source code of McPAD and the attack
datasets we used for our experiments, with the hope of making the results we
obtained reproducible.

The remainder of the paper is organized as follows. In Section 2 we summarize
the most relevant related work, whereas in Section 3 we give some background
on one-class classification and the combination of one-class classifier. In Sec-
tion 4 we present the details of our McPAD detection system, and in Section 5
we present and discuss our experimental results. We then briefly conclude in
Section 6.

5

2 Related Work

A number of payload-based anomaly IDS have been proposed which monitor
the payload of a packet for anomalies. In [19] Kruegel et al. describe a service-
specific intrusion detection system. They combine the type, length and payload
byte distribution of the service requests as features in a statistical model of
normal traffic to compute an anomaly score.

NETAD [23] monitors the first 48 bytes of IP packets. A number of separate
models are constructed corresponding to the most common network protocols.
An anomaly score is computed in order to detect rare events.

As mentioned before, PAYL [35] measures the frequency of the n-grams in
the payload (i.e., the data portion of the packet) and constructs one model
of normal traffic for each different packet length. A new version of PAYL
presented in [36] adds some functionalities to the original version. In particular,
the new version constructs a number of models for each packet length and
performs inbound and outbound traffic correlation to detect the propagation
of worms.

Polymorphism is commonly used in computer virus toolkits and is becoming
more and more used by worm writers. Evasive polymorphism has been recently
explored [8, 14]. CLET [8], an advanced polymorphic engine, performs spec-
trum analysis to evade IDS that use data mining methods for worm detection.
Given an attack payload, CLET adds padding bytes in a separate cramming
bytes zone (of given length) to make the byte frequency distribution of the
attack close to the model of normal traffic. In [14], Fogla et al. proposed a
polymorphic blending attack, which uses byte substitution and padding tech-
niques to evade PAYL. In [13] Fogla and Lee present a formal analysis of
the polymorphic blending attack, and in [30] Song et al. discuss the infeasi-
bility of modeling polymorphic shell-code and concludes that signature-based
approaches cannot be successful in case of sophisticated polymorphic attacks.

In order to cope with polymorphic blending attacks, Wang et al. proposed a
new payload-based anomaly detection system called ANAGRAM [37]. ANA-
GRAM stores n-grams that appear in normal traffic into a Bloom filter. During
detection, the n-grams are extracted from the payload under test. If more than
a certain percentage of n-grams are not present in the Bloom filter constructed
during training, the payload is classified as anomalous. Although similar in the
motivation, our approach is different from ANAGRAM because we model only
normal traffic, and we use multiple one-class SVM classifiers [28] to construct
our anomaly detector.

One of the first works on unlabeled network anomaly detection was presented
in [27], where a clustering algorithm is used to discover outliers in the training

6

dataset. Once the normal patterns are separated from outlier patterns, the
clusters of normal data are used to construct a supervised detection model. In
[12], Eskin et al. presented a geometric framework to perform anomaly detec-
tion. The patterns are mapped from a feature space F to a new feature space
F ′ and anomalies are detected by searching for patterns that lie in sparse
regions of F ′. Three different classification technique are used, a clustering al-
gorithm, a k-NN algorithm and a SVM-based one-class classifier. Experiments
are performed on the KDD-UCI dataset, both on the portion containing net-
work traffic, and on the portion containing sequences of system-calls.

Recently the paradigm of Multiple Classifier Systems (MCS) has been pro-
posed for misuse detection in [16] where classifiers trained on different feature
subsets are combined to attain better performance than those attained by
classifiers trained on the large feature space made of the union of subsets. A
different approach is proposed in [6] where a serial combination of classifiers is
proposed. Network traffic is serially processed by different classifiers. At each
stage a classifier may either decide for one attack class or send the pattern
to another stage, which is trained on more difficult cases. Reported results
show that MCS improve the performance of IDS based on statistical pattern
recognition techniques.

Our work was mainly inspired by [35] and [14]. We explore MCS constructed by
combining one-class SVM classifiers [28] for unlabeled payload-based anomaly
detection. We propose a new technique derived from n-gram analysis to extract
statistical features from the payload. The combination of multiple classifiers
aims at improving the classification performance of payload-based anomaly
IDS and to make polymorphic attacks harder to succeed.

3 Background

McPAD, our anomaly detector, is based on an ensemble of one-class Support
Vector Machine (SVM) classifiers. We will present the details of McPAD in
Section 4. In this section we provide some background on one-class classifica-
tion that is necessary for an easier understanding of the rest of the paper. We
first discuss one-class classification in general, then we present the internals of
one-class SVM classifiers, and the approach we adopt to combine them using
different combination rules.

7

3.1 One-Class Classification

One-class classification techniques are particularly useful in case of two-class
learning problems whereby one of the classes, referred to as target class, is
well-sampled, whereas the other one, referred to as outlier class, is severely
undersampled. The low number of examples from the outlier class may be
motivated by the fact that it is too difficult or expensive to obtain a sig-
nificant number of training patterns of that class [31]. The goal of one-class
classification is to construct a decision surface around the examples from the
target class in order to distinguish between target objects and all the other
possible objects, i.e., the outliers [31]. Given an unlabeled training dataset
that is deemed to contain mostly target objects, a rejection rate is usually
chosen during training so that a certain percentage of training patterns lies
outside the constructed decision surface. This takes into account the possible
presence of noise (i.e., unlabeled outliers), and allows us to obtain a more
precise description of the target class [31]. In the case when the training set
contains only “pure” target patterns, this rejection rate can be interpreted as
a tolerable false positive rate.

Several different one-class classification algorithms have been proposed in the
literature [31]. In the following, we briefly describe the One-Class SVM pre-
sented by Schölkopf et al. in [28], which we use to create the ensemble of
classifiers that constitutes the core of McPAD. As we discuss in Section 4,
there is an analogy between anomaly detection based on n-gram statistics
and text classification problems. We chose the one-class SVM classifier be-
cause SVM have been shown to achieve good performance in text classifi-
cation problems [29, 21]. Afterwards we explain how we combine One-Class
SVM classifiers using combination rules such as probability average, product,
maximum, and minimum, and the majority voting algorithm.

We will refer to a pattern vector xk = [xk1
, xk2

, .., xkl
] as the description of

a payload πk (i.e., the data portion of a network packet) in a l-dimensional
feature space F. We discuss in Section 4 how the features xki

, i = 1, .., l, are
measured in practice.

3.2 One-Class SVM

A one-class classifier inspired by the Support Vector Machine (SVM) classi-
fier [34] was proposed by Schölkopf et al. in [28]. The one-class classification
problem is formulated to find a hyperplane that separates a desired fraction of
the training patterns, called the target patterns, from the origin of the feature
space F. This hyperplane cannot be always found in the original feature space,

8

thus a mapping function Φ : F −→ F
′, from F to a kernel space F

′, is used. In
particular, it can be proven that when the gaussian kernel

K(x,y) = Φ(x) · Φ(y) = exp
(

−γ||x − y||2
)

(1)

is used it is always possible to find a hyperplane that solves the separation
problem. The problem is formulated as follows:

minw,ξ,ρ

(

1
2
‖w‖2 − ρ + 1

hC

∑

i
ξi

)

w · φ (xi) ≥ ρ − ξi, ξi ≥ 0, ∀i = 1, .., h

(2)

where w is a vector orthogonal to the separation hyperplane, C represents the
fraction of training patterns that are allowed to be rejected (i.e., that are not
separated from the origin by the hyperplain), xi is the i-th training pattern,
h is the total number of training patterns, ξ = [ξ1, .., ξh] is a vector of slack
variables used to “penalize” the rejected patterns, ρ represents the margin,
i.e., the distance of the hyperplane from the origin.

The solution of (2) gives us the desired separation hyperplane. A generic test
pattern z can then be classified as target or outlier using the following decision
function [28]

fsvc(z) = I
(

∑

i
αiK (xi, z) ≥ ρ

)

,
∑h

i=1 αi = 1 (3)

where I is the indicator function (whereby I(x) = 1 if x is true, otherwise
I(x) = 0), and the coefficients αi and the threshold ρ are provided by the
solution of (2). According to (3), a pattern z is either rejected (i.e., classified
as outlier) if fsvc(z) = 0, or accepted as target object if fsvc(z) = 1. It is worth
noting that most of the coefficients αi are usually equal to zero, therefore
fsvc(z) can be efficiently computed. The training patterns xi for which αi 6= 0
are referred to as support vectors.

3.3 Combining Multiple One-Class SVM Classifiers

Unlike the combination of two-class or multi-class classifiers, the combination
of one-class classifiers is usually not straightforward [32]. This is due to the fact
that usually it is not possible to reliably estimate the probability distribution
of the outlier class. As a consequence the posterior class probability cannot
be estimated and many combination rules used in multi-class classification
problems may not be applied. However, in [15] we showed that, when the
Gaussian kernel (1) is used, the output of the one-class SVM can be formulated
in terms of a class conditional probability by

9

p(x|ωt) = 1

(2π·s)
d
2

∑h
i=1 αi · K(x,xi) =

∑h
i=1 αi

1

(2π·s)
d
2

· e−
1

2

||x−xi||
2

s (4)

which respects the constraint
∫

Rd p(x|ωt)dx = 1 [15]. Assuming a uniform
distribution for the outlier class, this allows us to combine L different one-
class SVM classifiers as

yavg(x) =
1

L

L
∑

i=1

pi(x|ωt) (5)

for example, where ωt represents the target class. We can then use the simple
decision criterion [15]

yavg(x) < θ ⇒ x is an outlier (6)

where θ is a predefined threshold that can be tuned to find the desired trade-
off between false positives and detection rate. Equations (5) and (6) represent
the average of probabilities combination rules. Other alternative combination
rules are

yprod(x) =
L

∏

i=1

pi(x|ωt), yprod(x) < θ ⇒ x is an outlier (7)

which is the product of probabilities rule, and

ymin(x) =
L

min
i=1

pi(x|ωt), ymin(x) < θ ⇒ x is an outlier (8)

and
ymax(x) =

L
max
i=1

pi(x|ωt), ymax(x) < θ ⇒ x is an outlier (9)

which are the minimum and maximum probability combination rules, respec-
tively. Average, product, maximum and minimum probabilities are popular
simple (low cost) non-trainable combiners that have been show to be quite
successful for different classification problems [18, 20]. However, it is often dif-
ficult to predict which classification rule will perform the best on a specific real
problem. This is the reason why in the following we will compare the results
obtained using different rules for combining the output of different classifiers
in our anomaly detection system.

It is worth noting that in general only a small number of coefficients αi will
be different from zero, thus p(x|ωt) can be efficiently computed.

In case of the majority voting rule there is no need to estimate the class con-
ditional probabilities, and the application of the combination rule is straight-
forward. Assume the output of the L classifiers related to a payload πk to
be given as a vector c(πk) = [c1(x

(1)
k), c2(x

(2)
k), .., cL(x

(L)
k)] ∈ {0, 1}L, where

10

Fig. 1. Overview of McPAD

ch(x
(h)
k) = 1 if the h-th classifiers labels πk as target, otherwise ch(x

(h)
k) = 0.

The majority voting rule can be written as
∑

i=1..L ci(x
(1)
k) > L/2.

4 McPAD

In this section we provide the details of McPAD. We first describe how McPAD
extracts the features, and the algorithm used for dimensionality reduction.
Afterwards, we describe how different models of normal traffic are combined
to build our multiple classifier anomaly detector, and we formally analyze
the complexity of our classification system. A simplified view of McPAD is
depicted in Figure 1.

4.1 Feature Extraction

As we mentioned above, the detection model used by PAYL [35] is based on
the frequency distribution of the n-grams (i.e., the sequences of n consecutive
bytes) in the payload. The occurrence frequency of the n-grams is measured by
using a sliding window of length n. The window slides over the payload with a
step equal to one byte and counts the occurrence frequency in the payload of
the 256n possible n-grams. Therefore, in this case the payload is represented
by a pattern vector in a 256n-dimensional feature space. It is easy to see that
the higher n, the larger the amount of structural infomation extracted from
the payload. However, using n = 2 we already obtain 65,536 features. Larger
values of n are impractical given the exponentially growing dimensionality of
the feature space and the curse of dimensionality problem [11].

In order to solve this problem we propose to measure the occurrence frequency

11

of pairs of bytes that are ν positions (i.e., ν bytes) apart from each other in the
payload. This allows us to efficiently extract some information related to the
n-grams, with n > 2. We call such pairs of bytes 2ν-grams. Regardless of the
value of the parameter ν, measuring the 2ν-gram extracts 2562 features. As
we will discuss in the following, by combining information extracted by using
2ν-grams with different values of ν we can somehow (partially) reconstruct
the information that we would extract by directly measuring the frequency of
n-grams, with n > 2.

In practice, the occurrence frequency of the 2ν-grams can be measured by using
a (ν + 2) long sliding window with a “gap” between the first and last byte.
Consider a payload B = [b1, b2, .., bl], where bi is the byte value at position i.
The occurrence frequency in the payload B of an n-gram β = [β1, β2, .., βn] ,
with n < l, is computed as

f(β|B) =
of occurrences of β in B

l − n + 1
(10)

where the number of occurrences of β in B is measured by using the sliding
window technique, and (l − n + 1) is the total number of times the win-
dow can “slide” over B. f(β|B) can be interpreted as an estimate of the
probability p(β|B) of finding the n-gram β (i.e., the sequence of consecutive
bytes [β1, β2, .., βn]) in B. Accordingly, the probability of finding a 2ν-gram
{β1, βν+2} can be written as

p({β1, βν+2}|B) =
∑

β2,..,βν+1

p([β1, β2, .., βν+1, βν+2]|B) (11)

where the summation is over all the possible combinations of β2, .., βν+1. It is
worth noting that for ν = 0 the 2ν-gram technique reduces to the “standard”
2-gram technique. When ν > 0, the occurrence frequency in the payload of a
2ν-gram {β1, βν+2} can be viewed as a marginal probability computed on the
distribution of the (ν + 2)-grams that start with β1 and end with βν+2.

From the occurrence frequency of the n-grams it is possible to derive the distri-
bution of the (n−1)-grams, (n−2)-grams, etc. On the other hand, measuring
the occurrence frequency of the 2ν-grams does not allow us to automatically
derive the distribution of 2(ν−1)-grams, 2(ν−2)-grams, etc. The distributions
of 2ν-grams with different values of ν give us different structural information
about the payload. The intuition is that, ideally, if we could somehow combine
the structural information extracted using different values of ν = 0, .., N we
would be able to (at least partially) reconstruct the structural information
given by the distribution of n-grams, with n = (N + 2). This intuition moti-
vates the combination of classifiers that work on different descriptions of the
payload obtained using the 2ν-gram technique with different values of ν.

12

4.2 Dimensionality Reduction

Payload anomaly detection based on the frequency of n-grams is analogous
to a text classification problem for which the bag-of-words model and a sim-
ple unweighted raw frequency vector representation [21] is used. The different
possible n-grams can be viewed as the words, whereas a payload can be viewed
as a document to be classified. In general for text classification only the words
that are present in the documents of the training set are considered. This ap-
proach is not suitable in case of a one-class classification problem. Given that
the training set contains (almost) only target examples (i.e., “normal” docu-
ments), we cannot conclude that a word that has a probability equal to zero
to appear in the training dataset will not be discriminant. As a matter of fact,
if we knew of a word w that has probability p(w|dt) = 0, ∀dt∈Ct, of appearing
in the class of target documents Ct, and p(w|do) = 1, ∀do∈Co, of appearing in
documents of the outlier class Co, it would be sufficient to measure just one
binary feature, namely the presence or not of wt in the document, to construct
a perfect classifier. This is the reason why we choose to take into account all
the 256n n-grams, even though their occurrence frequency measured on the
training set is equal to zero. Using the 2ν-gram technique we still extract 2562

features. This high number of features could make it difficult to construct an
accurate classifier, because of the curse of dimensionality [11] and possible
computational complexity problems related to learning algorithms.

In order to reduce the dimensionality of the feature space for payload anomaly
detection, we apply a feature clustering algorithm originally proposed by
Dhillon et al. in [9] for text classification. Given the number of desired clusters
k, which is chosen a priori, the algorithm first randomly splits the features into
k groups. Then, the features are iteratively moved from one of the k clusters
to another until the information loss due to the clustering process is less than
a certain threshold τ . This clustering algorithm has the property to reduce the
within cluster and among clusters Jensen-Shannon divergence [9] computed
on the distribution of words, and has been shown to help obtain better clas-
sification accuracy results with respect to other feature reduction techniques
for text classification [9]. The inputs to the algorithm are:

(1) The set of distributions {p(Ci|wj) : 1≤i≤m, 1≤j≤l}, where Ci is the i-th
class of documents, m is the total number of classes, wj is a word and l
is the total number of possible different words in the documents.

(2) The set of all the priors {p(wj), 1≤j≤l}.
(3) The number of desired clusters k.
(4) The tolerable information loss τ .

The output is represented by the set of word clusters W = {W1, W2, .., Wk}.
Therefore, after clustering the dimensionality of the feature space is reduced

13

from l to k. In the original l-dimensional feature space, the j-th feature of
a pattern vector xi represents the occurrence frequency f(wj|di) of the word
wj in the document di. The new representation x′

i of di in the k-dimensional
feature space can be obtained by computing the features according to

f(Wh|di) =
∑

wj∈Wh

f(wj|di), h = 1, .., k (12)

where f(Wh|di) can be interpreted as the occurrence frequency of the cluster
of words Wh in the document di.

In case of a one-class problem, m = 2 and we can call Ct the target class and
Co the outlier class. The posterior probabilities {p(Ci|wj) : i = t, o, 1≤j≤l}
can be computed as

p(Ci|wj) = p(wj |Ci)p(Ci)

p(wj |Ct)p(Ct)+p(wj |Co)p(Co)

i = t, o, 1≤j≤l

(13)

and the priors {p(wj), 1≤j≤l} can be computed as

p(wj) = p(wj |Ct)p(Ct) + p(wj|Co)p(Co), 1≤j≤l (14)

The probabilities p(wj|Ct) of finding a word wj in documents of the target
class Ct can be reliably estimated on the training dataset, whereas it is diffi-
cult to estimate p(wj|Co), given the low number (or the absence) of examples
of documents in the outlier class Co. Similarly, it is difficult to reliably es-
timate the prior probabilities p(Ci) = Ni

N
, i = t, o, where Ni is the number

of training patterns of the class Ci and N = Nt + No is the total number of
training patterns. Given that No≪Nt (or even No = 0), the estimated priors
are p(Co) ≃ 0 and p(Ct) ≃ 1, which may be very different from the real prior
probabilities.

In our application, the words wj are represented by the 2562 possible different
2ν-grams (with a fixed ν). In order to apply the feature clustering algorithm,
we estimate p(wj|Ct) by measuring the occurrence frequency of the 2ν-grams
wj on the training dataset and we assume a uniform distribution p(wj|Co) =
1
l

of the 2ν-grams for the outlier class. We also assume p(Co) to be equal
to the desired rejection rate for the one-class classifiers (see Section 3), and
accordingly p(Ct) = 1 − p(Co).

14

4.3 Payload Classification

By varying the parameter ν and applying the dimensionality reduction algo-
rithm explained above, we obtain different compact representations of the pay-
load in different feature spaces. For each of these representations we construct a
model of normal traffic by training a one-class SVM classifier (see Section 3.2).
In practice, given a set of “gap” values {νi}i=1..m, and a dataset D = {pk}k=1..N

of (mostly) normal traffic, we construct m datasets Dνi = {pνi

k }k=1..N , i = 1..m,
one for each νi, according to the feature extraction and dimensionality reduc-
tion process described in Section 4.1 and Section 4.2. Afterwards, we train
a one-class SVM classifier on each dataset Dνi, thus obtaining m models
M1, M2, .., Mm of normal traffic.

During the operational phase, whenever a test payload p is received, we com-
pute m different representations of p, namely pν1 , pν2, ..pνm according to the fea-
ture extraction and dimensionality reduction process described above. Then,
we classify each representation pνi using model Mi. Finally, we combine the
classification results obtained from each model in order to make a final deci-
sion. We use the combination approach described in Section 3.3. In the case of
the average, product, minimum and maximum probability, the output of the
combiner is a score that can be interpreted as the probability of the payload
under test being normal, P (normal|p) (see Section 3.3). The final decision
depends on a threshold θ, whereby the payload p is classified as an attack
if P (normal|p) < θ, and as normal otherwise. In case of the majority vot-
ing combination rule (see Section 3.3), the output of the combiner equals the
number of classifiers that labeled p as attack. In this case, we can again set
a threshold θ, whereby if the number of classifiers that deemed p as attack is
greater than θ the final decision will be to classify p as attack, otherwise it
will be classified as normal. The threshold θ can be chosen in order to tune
the inevitable trade-off between false positives and detection rate.

4.4 Complexity Analysis

In this section we provide an analysis of the computational complexity of
our McPAD detection algorithm. Because the training of McPAD can be per-
formed off-line, here we only present an analysis of the computation involved
in the test phase.

Given a payload πj of length n and a fixed value of ν, the frequency of 2ν-
grams (see Section 4.1) can be computed in O(n). As the number of extracted
features is constant (equal to 216, regardless of the actual value of n and ν),
the mapping between the frequency distribution of 2ν-grams and the k feature

15

clusters (see Section 4.2) can be computed using a simple look-up table and a
number of sum operations that is always less than 216 (regardless of the value
of k). Therefore the feature reduction process can be computed in in O(1). The
feature extraction and reduction process has to be repeated m times choosing
every time a different value of ν. m represents the number of different one-
class classifiers used to make a decision about each payload πj , and the overall
feature extraction and reduction process can be accomplished in O(nm).

Once the features have been extracted, and the dimensionality reduced to
k, each payload has to be classified according to each of the m one-class
SVM classifiers. Let us first consider one single classifier. As mentioned in
Section 3.2, in order to classify a pattern vector xj (i.e., a representation of
the payload πj , in our case), the distance between xj and each of the support
vectors obtained during training has to be computed. Given the number of
feature clusters k, and the number of support vector s, the classification of
a pattern can be computed in O(ks). This classification process has to be
repeated m times and the results are then combined (e.g., using the average
of probability). The overall classification of a pattern vector xj can therefore be
computed in O(mks). It is worth noting that the number of support vectors s
depends on two main parameters, namely the size t of the training set, and the
value of the parameter C in Equation (2). The parameter C can be interpreted
as the fraction of “desired” false positives. Schölkopf et al. [28] showed that
when the solution of the problem in Equation (2) satisfies ρ 6= 0, tC 6 s.
Therefore, for a fixed size t of the training dataset the higher the “desired”
false positive rate chosen during training, the higher s, and in turn the higher
the computation time spent on each packet. We will show in Section 5 that
this is the source of an inevitable trade-off between the accuracy of McPAD
and its average computational cost per payload.

5 Experiments

In this section we report the results of the extensive experiments we performed.
We present the results regarding the accuracy of McPAD first, and then we
compare it to PAYL [35]. We limited our analysis to HTTP traffic that consists
of several days of simulated and real legitimate HTTP requests, several HTTP
attacks provided by the authors of [17], and a large number of polymorphic
HTTP attacks we generated ourselves. We found that collecting a sufficient
amount of attack traffic for protocols other than HTTP is very hard and
expensive. To the best of our knowledge no such dataset is publicly available.

16

Table 1
Summary of the parameter settings used in the experiments with McPAD.

γ 0.5

ν 0-10

Feature Clusters (k) 10, 20, 40, 80, 160

Desired FP Rate
10%, 5%, 2%, 1%, 0.5%, 0.2%

0.1%, 0.05%, 0.02%, 0.01%, 0.001%

5.1 Experimental Setup

We implemented an open-source proof-of-concept version of McPAD, which we
made available at http://roberto.perdisci.googlepages.com/mcpad. Mc-
PAD is written entirely in Java and is built on top of LibSVM (http://www.
csie.ntu.edu.tw/∼cjlin/libsvm/) and Jpcap (http://netresearch.ics.
uci.edu/kfujii/jpcap/doc/). In order to compare McPAD to PAYL [35],
we requested and obtained a copy of the PAYL software from Columbia Uni-
versity.

We experimented with several different combinations of the configuration pa-
rameters for McPAD. We used a “gap” ν = 0..10 for the 2ν-gram feature
extraction process (see Section 4.1). We used one-class SVM classifiers with
Gaussian Kernel (see Section 3.2). The value of γ for the Gaussian Kernel was
set equal to 0.5 in all the experiments, because this value gave good results dur-
ing preliminary experiments [26]. We used several values for the number of fea-
ture clusters k used in the dimensionality reduction process (see Section 4.2).
In particular we experimented with k = 10, 20, 40, 80, 160 feature clusters. The
“desired” false positive rate (see Section 3) used during the training of the
one-class SVM classifiers was set to FP = 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%,
0.05%, 0.02%, 0.01%, 0.005%, 0.002%, and 0.001%.

The parameter values used during the experiments are summarized in Table 1,
for convenience.

5.2 Validation Metrics

In order to validate the classification performance of our detector, we use the
Receiver Operating Characteristic (ROC) curve analysis, and the Area Under
the Curve (AUC). The ROC curve provides a way to visually represent how the
trade-off between false positives and detection rate varies for different values
of the detection threshold [3]. Differently from the classic accuracy metric,
which suffers from a dependency to specific values of the detection threshold

17

and related false positives and detection rate [3], the AUC summarizes the
classification performance of the classifier in the entire range [0, 1] of the false
positive rate and can be interpreted as the probability of scoring attack packets
higher than legitimate packets [7] (i.e., the higher the AUC, the easier to
distinguish attacks from normal traffic).

One problem with the AUC for evaluating intrusion detection systems is that
it is computed along the entire range [0, 1] of the false positive rate. Because
it is not realistic that an intrusion detection system will be configured to
generate a high number of false alarms, we are mainly interested in evaluating
the classification performance of our anomaly detector for low values of the
false positive rate. To this end, we compute the area under the ROC curve in
the range [0, 0.1] of the false positive rate (i.e., we do not take into account
how the classification system performs for a false positive rate higher than
10%). We normalize the “partial” AUC computed in [0, 0.1] by dividing it by
0.1, in order to obtain a number that varies between 0 and 1. The highest the
value of the normalized AUC the better the classification performance.

5.3 Datasets

In this section we describe the characteristics of the datasets that we used in
our experiments.

DARPA We used the HTTP requests extracted from the first week of the
DARPA’99 dataset [22], which consists of five entire days of simulated normal
traffic to and from an airforce base. Although the DARPA dataset is outdated
and has been criticized [24, 23] for the way it was generated, to the best of
our knowledge it is the only public dataset of network traffic that represents a
common base on which experimental results may be reproduced and compared
to the ones obtained using different approaches. We randomly split each day of
traffic into two parts, a training set made of approximately 80% of the traffic
and a validation set made of the remaining 20% of the traffic. For each day
of training/validation, a test dataset was constructed which consists of 20%
of the traffic randomly chosen from all the remaining days (i.e., the traffic
from the days which are not included in the training/validation set). The
characteristics of the obtained dataset are reported in Table 2.

GATECH We collected seven days of real HTTP requests towards the web-
site of the College of Computing School at the Georgia Institute of Technology.

18

Table 2
DARPA Dataset Characteristics
DARPA Training Set Validation Set Test Set

Day Size (MB) Packets Size (MB) Packets Size (MB) Packets

1 19 161,602 4.7 40,057 44 137,997

2 23 196,605 5.7 48,905 42 131,738

3 23 189,362 5.5 46,957 42 133,133

4 30 268,250 7.6 67,593 39 121,999

5 18 150,847 4.4 37,639 45 139,869

Table 3
GATECH dataset characteristics.
GATECH Training Set Validation Set Test Set

Day Size (MB) Packets Size (MB) Packets Size (MB) Packets

1 131 307,929 33 76,654 147 350,849

2 72 171,750 19 43,418 162 385,247

3 124 289,649 31 72,320 149 354,637

4 110 263,498 28 65,260 152 361,789

5 79 195,192 20 48,653 161 379,610

6 78 184,572 20 45,949 160 380,895

7 127 296,425 32 74,218 148 352,119

Although this traffic is completely unlabeled, it is very reasonable to consider
it as containing mostly legitimate traffic. This would not be true only in case
persistent intrusion attempts were ongoing at the time we collected the traf-
fic. Such attacks are generally unlikely and usually noticeable. Given that no
evidence of persistent attacks was reported during the period in which we
collected the traffic, we speculate the level of noise in our dataset is negligi-
ble. Therefore, in the following we consider the GATECH dataset as “clean”
for the purpose of measuring the false positive rate. Similarly to the DARPA
dataset, we divided each day of traffic into two parts, a training set made of
approximately 80% of the traffic and a validation set made of 20% of the traf-
fic. For each day of training/validation, a test dataset was constructed which
consists of 20% of the traffic from all the remaining days. The characteristics
of the GATECH dataset are reported in Table 3.

ATTACKS We experimented with several non-polymorphic and polymor-
phic HTTP attacks. Although we were able to find a public source of non-
polymorphic HTTP attacks provided by the authors of [17], we were not able
to find any public source of polymorphic attacks. We therefore created the
polymorphic attacks ourselves, using both the polymorphic engine CLET [8]
and a Polymorphic Blending Attack engine similar to the one used in [14, 13].
We decided to make the entire attack dataset publicly available at http:

//roberto.perdisci.googlepages.com/mcpad, in the hope that this will fos-

19

ter future research. We divided the attack dataset into the following groups
of attacks:

• Generic Attacks. This dataset includes all the HTTP attacks provided
by the authors of [17] plus a shell-code attack that exploits a vulnerability
(MS03-022) in Windows Media Service (WMS), which we used in [26]. In
total this dataset consists of 66 HTTP attacks. Among these, 11 are shell-
code attacks, i.e., attacks that carry executable code in the payload. Other
attacks cause Information Leakage and Denial of Service (DoS), for example.

• Shell-code Attacks. This dataset contains 11 shell-code attacks from the
Generic Attacks dataset. Shell-code attacks are particularly dangerous be-
cause their objective is to inject executable code and hijack the normal
execution of the target application. Some famous worms, like Code-Red, for
example, use shell-code attacks to propagate.

• CLET Attacks. This dataset contains 96 polymorphic attacks generated
using the polymorphic engine CLET [8]. We selected 8 among the 11 Shell-
code Attacks for which the source code was available, and created a poly-
morphic version of each attack using the payload statistics computed on
each distinct day of traffic from the DARPA and GATECH datasets for
training CLET’s polymorphic engine. Overall we generated 96 polymorphic
CLET attacks.

• Polymorphic Blending Attacks (PBAs). We created this dataset us-
ing three shell-code attacks, namely Code-Red (a famous worm that ex-
ploits a vulnerability in Windows IIS (MS01-044)), DDK (an exploit to a
buffer overflow vulnerability in Windows IIS (MS01-033)), and an attack
against Windows Media Service (MS03-022). For each one of these attacks
we created PBAs that mimic the normal traffic of five different hosts that
we selected at random from the GATECH dataset. Based on the traffic
of these hosts, we created several versions of the attacks by spreading the
attack payload on different values of the total number of attack packets
and targeting a different feature extraction method. We created PBAs that
mimic the statistical distribution of n-grams with n = 1..12, 2ν-grams with
ν = 1..10, and 2all-gram which is intended to mimic all the 2ν-grams with
ν = 1..10 at the same time. Overall, we generated 6,339 PBAs that aim
to evade both PAYL and McPAD. It is worth noting that the main goal
of the PBAs we generated is to mimic the distribution of n-grams (with
different values of n) and can therefore be seen as evasion attacks against
any payload-based anomaly IDS that uses n-gram analysis.

The characteristics of the ATTACKS dataset are summarized in Table 4.

20

Table 4
ATTACKS dataset characteristics

Type Attacks Attack Packets

Generic 66 205

Shell-code 11 93

CLET 96 792

PBA 6,339 71,449

Total 6,512 72,539

5.4 Experimental Results

In the first part of our experiments we show that the 2ν-gram feature extrac-
tion technique presented in Section 4.1 is actually able to extract structural
information from the payload. Afterwards, we evaluate the accuracy of Mc-
PAD in detecting Generic Attacks, Shell-code Attacks and polymorphic CLET
Attacks. In the last part of the experiments we compare McPAD to PAYL on
these three groups of attacks, and we evaluate the robustness of the two de-
tectors in the face of advanced Polymorphic Blending Attacks (PBAs).

5.4.1 2ν-gram Analysis.

We discussed in Section 4.1 how to extract the features using the 2ν-gram
technique. We also argued that the occurrence frequency of 2ν-grams somehow
“summarizes” the occurrence frequency of n-grams. This allows us to capture
some byte sequence information. In order to show that the 2ν-grams actually
extract structural information from the payload, we can consider the bytes in
the payload as random variables and then we can compute the relative mutual
information of bytes that are ν positions apart from each other. That is, for a
fixed value of ν we compute the quantity

RMIν,i =
I(Bi; Bi+ν+1)

H(Bi)
(15)

where I(Bi; Bi+ν+1) is the mutual information of the bytes at position i and
(i + ν + 1), and H(Bi) is the entropy of the bytes at position i. By computing
the average for RMIν,i over the index i = 1, .., (L−ν−1), with L equal to the
maximum payload length, we obtain the average relative mutual information
for the 2ν-grams along the payload. We measured this average relative mutual
information on both the training and the test set varying ν from 0 to 20. The
results are shown in Figure 2 for the traffic of day 1 and the merged traffic of
day 2 to 5 from the GATECH dataset. It is easy to see that the amount of
information extracted using the 2ν-gram technique is maximum for ν = 0 (i.e.,
when the 2-gram technique is used) and decreases for growing ν. However the
decreasing trend is slow and the average RMI is always higher than 0.5 until
ν = 10. This is probably due to the fact that HTTP is a highly structured

21

protocol.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

A
ve

ra
ge

 R
el

at
iv

e
M

ut
ua

l I
nf

or
m

at
io

n day 1

day 2−5

Fig. 2. Average relative mutual information for varying ν (computed on GATECH
dataset).

Summing up, the 2ν-gram technique indeed extracts structural information
from the payload, which helps to construct accurate classifiers.

5.4.2 Validation of McPAD

Similarly to [26], we performed experiments with a combination of 11 one-class
classifiers. Each classifier is trained on a different representation of normal pay-
loads obtained using the 2ν-gram technique, with ν = 0, .., 10, as explained in
Section 4.1. In Section 5.4.1 we showed that for ν ≤ 10 the relative mutual
information of bytes in the payload that are ν positions apart is higher than
0.5. This means that 2ν-grams with ν ≤ 10 actually convey structural infor-
mation extracted from the payload. Also, combining 2ν-grams with ν ≤ 10
allows us to approximate the distribution of 12-grams, which may be difficult
for the attacker to mimic, as explained in [26].

In this paper, we performed separate tests using both the DARPA dataset
and the GATECH dataset for the training phase and for computing the false
positive rate. In both cases we used the ATTACKS dataset to estimate the
detection rate. For each day of normal traffic, we trained McPAD on 80%
of the traffic (the training dataset), and tuned the detection threshold (see
Section 4.3) on the remaining 20% of traffic (the validation dataset) in order
to obtain the desired false positive rate. We then tested the obtained classifier
on 20% of the traffic from all the remaining days of traffic not involved in the
training and validation process. For example, we trained and validated (for
choosing the detection rate) McPAD on the first day of the DARPA dataset,
and tested it on 20% of the traffic randomly sampled from days 2 to 4 and on
each group of attacks in the ATTACK dataset. We repeated the same process
for all the other days, thus performing a 5-fold cross validation evaluation (the
DARPA dataset consists of 5 days of normal traffic). We proceeded in a similar

22

Table 5
DARPA dataset - summary of normalized AUC results computed over different
values of k.

Maj. Vot. Avg. Prob. Prod. Prob. Min. Prob. Max. Prob.

Generic Attacks

MAX 0.94425 0.97837 0.97868 0.97377 0.91530

MIN 0.83100 0.87116 0.87092 0.83963 0.84533

AVG 0.89211 0.93982 0.93996 0.90682 0.87993

STDEV 0.02834 0.02672 0.02668 0.03048 0.02078

Shell-code Attacks

MAX 0.97910 0.99990 0.99990 0.99986 0.98400

MIN 0.95410 0.95235 0.95228 0.94354 0.92836

AVG 0.96876 0.98698 0.98700 0.98537 0.96496

STDEV 0.00616 0.01684 0.01686 0.01830 0.01009

CLET Attacks

MAX 0.99939 0.99944 0.99944 0.99969 0.99924

MIN 0.98467 0.98324 0.98318 0.97328 0.95686

AVG 0.99547 0.99639 0.99638 0.99500 0.99329

STDEV 0.00407 0.00459 0.00460 0.00717 0.00881

Table 6
GATECH dataset - summary of normalized AUC results computed over different
values of k.

Maj. Vot. Avg. Prob. Prod. Prob. Min. Prob. Max. Prob.

Generic Attacks

MAX 0.8787 0.8978 0.8976 0.9073 0.8424

MIN 0.8054 0.8360 0.8359 0.8370 0.5822

AVG 0.8452 0.8671 0.8673 0.8752 0.7578

STDEV 0.0213 0.0169 0.0170 0.0173 0.0587

Shell-code Attacks

MAX 0.99729 0.99991 0.99991 0.99987 0.99918

MIN 0.97904 0.98512 0.98512 0.96748 0.56770

AVG 0.98926 0.99744 0.99742 0.99492 0.92340

STDEV 0.00456 0.00330 0.00333 0.00813 0.10504

CLET Attacks

MAX 0.99897 0.99953 0.99954 0.99970 0.99930

MIN 0.99403 0.99721 0.99722 0.99713 0.74793

AVG 0.99764 0.99829 0.99828 0.99908 0.94872

STDEV 0.00098 0.00066 0.00064 0.00070 0.08468

way for the GATECH dataset, for which we performed a 7-fold cross validation
evaluation (the GATECH dataset consists of 7 days of normal traffic).

We repeated such experiments fixing the number of feature clusters k and
using different values of the desired false positive rate and combination rule.
Therefore, for each fixed value of k and combination rule we were able to

23

Table 7
DARPA dataset - Average of normalized AUC results for different values of k.

Maj. Vot. Avg. Prob. Prod. Prob. Min. Prob. Max. Prob.

Generic Attacks

k=10 0.87097 0.91665 0.91698 0.88028 0.87066

k=20 0.87631 0.92025 0.92013 0.90145 0.87058

k=40 0.89713 0.93291 0.93334 0.8981 0.88476

k=80 0.8954 0.95584 0.95589 0.91748 0.88482

k=160 0.92075 0.97343 0.97347 0.93677 0.8888

Shell-code Attacks

k=10 0.96707 0.97691 0.97686 0.97572 0.96962

k=20 0.96762 0.98282 0.98281 0.98107 0.96483

k=40 0.96745 0.98256 0.98263 0.98194 0.95724

k=80 0.96958 0.99404 0.99404 0.99145 0.96713

k=160 0.97208 0.9986 0.99865 0.99668 0.966

CLET Attacks

k=10 0.99539 0.99496 0.99495 0.99409 0.9953

k=20 0.99423 0.99489 0.99488 0.99352 0.98642

k=40 0.99412 0.99575 0.99574 0.99601 0.99424

k=80 0.9972 0.99815 0.99815 0.99558 0.99524

k=160 0.99639 0.9982 0.9982 0.99582 0.99525

compute a 5-fold and 7-fold cross validation of the normalized AUC. Table 5
and Table 6 report the maximum, minimum, average and standard deviation
of the normalized cross-validation AUC computed over the different values of
k for each combination rule we considered. On the other hand, Table 7 and
Table 8 report the average normalized AUC obtained with cross-validation for
each different value of k and different combination rule. It is easy to see that the
average, product, and minimum probabilities combination rules provide the
highest values of average AUC, and therefore best classification performance.
Also, as we can see the average AUC reaches values very close to 1, when Shell-
code and CLET Attacks are considered. As mentioned above, Shell-code and
CLET Attacks carry some form of executable code in the payload. This causes
the statistical distribution of byte values in the payload to be severely altered,
compared to the normal distribution. We believe the presence of executable
code in the payload has even a more evident effect on the distribution of 2ν-
grams. This is the reason why McPAD is so effective in detecting this kind
of attacks. The Generic attacks are more difficult to detect. The reason is
that this dataset contains information leakage and Denial of Service (DoS)
attacks, for example, besides shell-code attacks. Information leakage and DoS
attacks usually do not carry executable code, and although they include some
abnormality in the payload that allows the attacker to exploit the targeted
vulnerability, they do not significantly alter the distribution of byte values in
the payload, compared to normal traffic.

24

Table 8
GATECH dataset - Average of normalized AUC results for different values of k.

Maj. Vot. Avg. Prob. Prod. Prob. Min. Prob. Max. Prob.

Generic Attacks

k=10 0.83501 0.86331 0.8633 0.87187 0.76765

k=20 0.8366 0.8613 0.86135 0.86882 0.7492

k=40 0.8366 0.86312 0.86407 0.87783 0.77834

k=80 0.84778 0.85948 0.8595 0.88594 0.80212

k=160 0.87016 0.8884 0.88828 0.87131 0.69164

Shell-code Attacks

k=10 0.98632 0.99544 0.99543 0.99323 0.94105

k=20 0.98758 0.99689 0.9969 0.99361 0.94685

k=40 0.98903 0.99827 0.99826 0.99417 0.97585

k=80 0.99613 0.99874 0.99875 0.9965 0.98666

k=160 0.98723 0.99785 0.99775 0.99709 0.76661

CLET Attacks

k=10 0.99776 0.99854 0.99854 0.99866 0.9589

k=20 0.99778 0.99839 0.99839 0.99925 0.969

k=40 0.99757 0.99815 0.99815 0.99908 0.98624

k=80 0.99773 0.99785 0.9979 0.99925 0.99669

k=160 0.99737 0.9985 0.99844 0.99913 0.83275

We also performed experiments with a number of classifiers m lower than
11. Figure 3 and Figure 4 present the results on the classification of Generic
Attacks and Shell-code Attacks, respectively for different values of m between
3 and 11. The experiments were performed in the following way. We merged
the 7 days of GATECH traffic, and then we split it in two parts of equal size.
We used one half of the obtained dataset for training McPAD, and the second
half to test the false positive rate. We used the Generic Attacks and Shell-
code Attacks, respectively, to compute the detection rate. During test, for
each payload in input McPAD picks m classifiers at random among the pool
of 11 available classifiers (each trained with a different value of ν = 0..10, as
explained above), classifies the payload, and combines the obtained m outputs.
Both Figure 3 and Figure 4 report the results obtained using the minimum
probability combination rule. As we can see, the AUC slightly decreases for
decreasing values of the number of feature clusters k. Also, the AUC decreases
with the number of combined classifiers m. However, it is worth noting that
in Figure 4 the AUC is always higher than 0.97, and for k = 160 the AUC
is always higher than 0.985 even when m = 3. This confirms that McPAD is
very good at detecting Shell-code Attacks, even when the number of one-class
classifiers in the ensemble is low. On the other hand, Figure 4 shows that
McPAD suffers more when detecting Generic Attacks for low values of m and
k, although the AUC stays above 0.8 when k = 160 is used. In Section 5.4.4
we will discuss how the number of classifiers m and the value of k impact the
average computational cost per payload.

25

0 2 4 6 8 10 12

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Generic Attacks

m

A
U

C

k

40
80
160

Fig. 3. Generic Attacks detection - AUC obtained for
different values of the number of the feature clusters
k, and number of combined classifiers m. The combi-
nation rule used was minimum probability.

0 2 4 6 8 10 12

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Shell−code Attacks

m

A
U

C

k

40
80
160

Fig. 4. Shell-code Attacks detection - AUC obtained
for different values of the number of the feature clus-
ters k, and number of combined classifiers m. The
combination rule used was minimum probability.

5.4.3 Comparison between McPAD and PAYL

In this section we present the results of the comparison between McPAD and
PAYL. In order to compare the two anomaly detectors, we proceeded this
way: we first merged the 5 days of traffic of the DARPA dataset and than we
randomly split the obtained traffic in two portions, 50% reserved for training

26

purposes and 50% for testing. We did the same for the GATECH dataset,
i.e., we merged the 7 days of traffic and then we randomly split it in two
parts of roughly the same size. First, we trained both McPAD and PAYL on
the first half of the DARPA dataset, and then we tested both the detectors
on the second half of the DARPA dataset and the entire ATTACKS dataset.
We repeated the same procedure using the GATECH dataset. For the sake
of brevity, in the following we only present the results obtained using the
GATECH dataset. The results on the DARPA dataset are similar. We set
the parameters of McPAD to k = 160, a desired false positive rate of 1% for
each single one-class SVM classifier, and the maximum probability combination
rule. We chose this configuration of McPAD because it provided slightly better
results compared to other configurations we tried for the detection of polymor-
phic blending attacks at very low false positives, while maintaining also good
results for the detection of shell-code attacks and polymorphic CLET attacks
at very low false positives as well. We varied the detection threshold on the
output of the combination of classifiers, so to vary the trade-off between false
positives and detection rate, thus allowing us to draw the ROC curve.

Figure 5 and Figure 6 report the results obtained with PAYL and McPAD,
respectively. In this case, the test dataset consisted of the second half of the
GATECH traffic, which we use to compute the false positives, and the Generic
Attacks, Shell-code Attacks, and CLET Attacks, on which we computed the
detection rate. The three curves in the graph reflect the obtained results. It
is easy to see that for all of the three groups of attacks, the detection rate
of PAYL rapidly decreases for a false positive rate below 5 · 10−3. On the
other hand, McPAD is able to detect the three groups of attacks even at a
false positive rate of 10−5. In particular, McPAD is able to detect shell-code
attacks and polymorphic shell-code attacks generated using CLET very well,
with a detection rate around 90% and above even at very low false positive
rates.

Figure 7 and Figure 8 show the results obtained on several Polymorphic Blend-
ing Attacks (PBAs) derived from the Code-Red worm. Although we generated
a high number of polymorphic attacks, here we only report part of the results,
for the sake of brevity. Both figures report the ROC curves obtained using
n-gram Code-Red attacks with n = 1, 2, 4, 12, and 2-all-gram attacks (see
Section 5.3) constructed using either 5 or 10 overall attack packets (reported
at the end of the attacks’ name in the graph legend). Intuitively, the larger
the number of packets, the larger the space available for the attacker to better
mimic the distribution of normal traffic [14, 13], and thus the more difficult it
is to detect the attack. It is easy to see that while the detection rate of PAYL
rapidly drops at a false positive rate around 10−3, in some cases McPAD is able
to “push” the ROC curves farther to the left (lower false positives). This shows
that McPAD is more robust than PAYL for PBA instances that are spread
over a limited number of packets. However, when the attack is spread over a

27

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

generic
shell−code
CLET

Fig. 5. PAYL - ROC curves for Generic, Shell-code,
and CLET attacks

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

generic
shell−code
CLET

Fig. 6. McPAD - ROC curves for Generic, Shell-code,
and CLET attacks

large number of packets (e.g. 10 in the case of the Code-Red PBA), neither
PAYL nor McPAD is able to detect the attack at very low false positives.

Figure 9 and Figure 10 show similar results for PBAs derived from the DDK
attack using either 3 or 5 packets., whereas Figure 11 and Figure 12 show the
results obtained with PBAs derived from the WMS attack using either 1 or 3
packets.

5.4.4 Computational Cost Analysis

In this section we discuss the experimental results regarding the performance
of McPAD and PAYL in terms of average computational cost per payload. We
performed the experiments on a machine equipped with a 2GHz Dual Core

28

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.cred.5
1−gram.cred.10
2−gram.cred.5
2−gram.cred.10
4−gram.cred.5
4−gram.cred.10
12−gram.cred.5
12−gram.cred.10
2−all−gram.cred.5
2−all−gram.cred10

Fig. 7. PAYL - ROC curves for Code-Red PBA at-
tacks (the string “cred” in the legend stands for
“code-red”).

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.cred.5
1−gram.cred.10
2−gram.cred.5
2−gram.cred.10
4−gram.cred.5
4−gram.cred.10
12−gram.cred.5
12−gram.cred.10
2−all−gram.cred.5
2−all−gram.cred10

Fig. 8. McPAD - ROC curves for Code-Red PBA
attacks (the string “cred” in the legend stands for
“code-red”).

AMD OpteronTM Processor and 8GB of RAM, although both McPAD and
PAYL used only one CPU core at a time, and always less than 4GB of RAM.

Table 9 and Table 10 report the results obtained with PAYL and McPAD,
respectively, on both the DARPA and GATECH datasets. The numbers be-
tween parenthesis in the first column in both tables represet the number of
payloads in each test dataset. We filtered out all the packets which did not
carry a TCP payload (e.g., we did not count the time spent on SYN, and FIN
packets). The average time per payload is reported in terms of milliseconds.
In Table 10 we report the results obtained considering only a few possible
parameter configurations for McPAD, for the sake of brevity. As discussed
above, k represents the number of feature clusters, whereas FP represents the

29

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.ddk.3
1−gram.ddk.5
2−gram.ddk.3
2−gram.ddk.5
4−gram.ddk.3
4−gram.ddk.5
12−gram.ddk.3
12−gram.ddk.5
2−all−gram.ddk.3
2−all−gram.ddk.5

Fig. 9. PAYL - ROC curves for DDK PBA attacks.

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.ddk.3
1−gram.ddk.5
2−gram.ddk.3
2−gram.ddk.5
4−gram.ddk.3
4−gram.ddk.5
12−gram.ddk.3
12−gram.ddk.5
2−all−gram.ddk.3
2−all−gram.ddk.5

Fig. 10. McPAD - ROC curves for DDK PBA attacks.

“desired” false positive rate which we chose to train the SVM models and tune
the detection threshold on the output of the combination rules. m represents
the number of combined models. We experimented with m = 11, which refers
to the combination of all the SVM models constructed on different values of
the parameter ν = 0..10. Also, we experimented with m = 3 by picking 3
different models out of the available 11 SVM models at random in order to
classify each payload. In other words, during the test phase, for each payload
McPAD picks 3 of the 11 SVM models at random, classifies the payload using
only the chosen 3 models, and combins the obtained 3 outputs to make the
final decision about whether the payload under test is anomalous or not. We
found that this approach decreases the average computation cost per payload
while maintaining a high detection rate at very low false positive rates in
most scenarios, as shown in Figure 13 and Figure 14 (these two figures were
obtained using the same configuration of McPAD used to plot Figure 6 and
Figure 8, with the only difference that we combined only 3 classifiers, instead

30

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.wms.1
1−gram.wms.3
2−gram.wms.1
2−gram.wms.3
4−gram.wms.1
4−gram.wms.3
12−gram.wms.1
12−gram.wms.3
2−all−gram.wms.1
2−all−gram.wms.3

Fig. 11. PAYL - ROC curves for WMS PBA attacks.

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.wms.1
1−gram.wms.3
2−gram.wms.1
2−gram.wms.3
4−gram.wms.1
4−gram.wms.3
12−gram.wms.1
12−gram.wms.3
2−all−gram.wms.1
2−all−gram.wms.3

Fig. 12. McPAD - ROC curves for WMS PBA attacks.

of 11).

It is easy to see that the results reported for McPAD in Table 10 are consistent
with the computational complexity analysis in Section 4.4, in particular for
the results on the GATECH dataset. The difference between the results on the
DARPA and GATECH datasets are due to the fact that for a fixed “desired”
false positive rate the number of support vectors grows with the size of the
training dataset. As the GATECH training dataset is larger than the DARPA
training dataset, the SVM models used to classify GATECH traffic will have
more support vectors (see Section 4.4), and therefore a higher average cost
per test payload.

The performance of PAYL in terms of average computational cost per pay-
load is much better than our McPAD software. However, it is worth noting
that our software is a proof-of-concept Java implementation of the algorithms
described in this paper, and that both LibSVM, on which McPAD is based,

31

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

all non−morphed
shell−code
CLET shell−code

Fig. 13. McPAD - ROC curves for Generic, Shell-code,
and CLET attacks. The ROC refers to classification
results obtained by combining 3 classifiers chosen at
random among 11 one-class classifiers.

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1e−05 5e−05 1e−04 5e−04 1e−03 5e−03 1e−02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−gram.cred.5
1−gram.cred.10
2−gram.cred.5
2−gram.cred.10
4−gram.cred.5
4−gram.cred.10
12−gram.cred.5
12−gram.cred.10
2−all−gram.cred.5
2−all−gram.cred10

Fig. 14. McPAD - ROC curves for Code-Red PBA
attacks. The ROC refers to classification results ob-
tained by combining 3 classifiers chosen at random
among 11 one-class classifiers.

and McPAD itself are not optimized. In particular, the classification of a pay-
load using a given one-class SVM can be easily parallelized. This is because
the distance between the pattern vector representing the payload and each
support vector in Equation (3) can be computed independently. The results
can then be summed up and compared to the threshold ρ in order to com-
pute the probability p(x|ωt) in Equation (4). Also, the classification results of
each single one-class SVM can be computed independently and then combined
using one of the combination rules discussed in Section 3.3 (e.g., average of
probabilities).

32

Table 9
PAYL’s average processing time per payload. The number between parenthesis rep-
resents the number of payloads in the test dataset.
DARPA (137,997) 0.039ms

GATECH (1,068,429) 0.032ms

Table 10
McPAD’s average processing time per payload. The number between parenthesis in
the first column represents the number of payloads in the test dataset.

FP=0.001 FP=0.001 FP=0.01 FP=0.01

m=3 m=11 m=3 m=11

DARPA (137,997)

k=10 3.07ms 10.96ms 3.16ms 11.04ms

k=40 3.04ms 11.02ms 3.11ms 11.31ms

k=160 3.13ms 10.92ms 3.81ms 13.39ms

GATECH (1,068,429)

k=10 4.28 16.23ms 4.94ms 17.53ms

k=40 4.16ms 15.92ms 6.14ms 21.93ms

k=160 4.95ms 17.11ms 10.49ms 38.45ms

Another approach that can be used to optimized the performance of our IDS,
is to use it as a second-stage classifier. For example, we could use PAYL con-
figured with a detection threshold that forces it to generated a high percentage
of FP rate, say 5%, for example. In turn, this high percentage of “desired”
false positives forces PAYL to classify as normal only those payloads that
have a very low anomaly score (as computed by PAYL itself), and for which
we are therefore very confident that they do not carry an attack (as we can see
from Figure 5, 7, 9, and 11, PAYL has a high detection rate at false positive
rates higher than 1%). Only those payloads that are classified as anomalous
by PAYL may then be fed to McPAD, which should be configured in order to
accept only a small percentage of false positives, say 0.01%. As McPAD has a
higher detection rate than PAYL for very low false positive rates (in particular
for shell-code and CLET attacks), the overall result is a two-stage IDS char-
acterized by high detection rate at very low false positive rate. At the same
time, as in average only 5% of the payloads will undergo “precise scrutiny” by
McPAD, the computational cost per payload of the entire two-stage classifier
will also be much lower in average, compared to using McPAD by itself.

It is also worth noting that techniques like load-balancing can be employed.
For example, it is typical to have more than one web server offering the same
service, for both efficiency and fault tolerance reasons. Putting an instance of
our IDS in front of each of a pool of N Web servers in load balance would
decrease the traffic crossing each instance of McPAD, thus multiplying the
overall traffic that can be handled by the provider of the web services by N .
Although this solution may be financially more expensive, we believe that in

33

a number of practical scenarios the increase in security provided by our IDS
would generate a positive return of investment. This reasoning is supported by
the analysis presented in Section 5.5, where we show that PAYL has a much
lower Bayesian detection rate compared to McPAD.

5.5 Bayesian Detection Rate

The experimental results show that McPAD is able to detect attacks even at
very low false positive rates. This is particularly true for shell-code attacks
and polymorphic attacks created using morphing engines such as CLET [8].
On the other hand the detection rate of PAYL quickly drops to zero at low
false positive rates. This is an important result, because being able to main-
tain a high detection rate with very low false positives greatly improves the
Bayesian detection rate P (Intrusion|Alarm) [2], i.e., the probability of hav-
ing an intrusion given that the IDS issued an allarm. The Bayesian detection
rate is defined as:

P (I|A) =
P (A|I)P (I)

P (A|I)P (I) + P (A|Ī)P (Ī)
(16)

where we used I for Intrusion, A for Alarm, and Ī for Not Intrusion. It is easy
to see that the detection rate can be viewed as an estimate of P (A|I), whereas
the false positive rate is an estimate of P (A|Ī). Because intrusion attempts are
not frequent and the number of attack packets usually represents a very small
fraction of the traffic 2 , the probability P (I) = 1−P (Ī) is usually very small.
As a consequence, the Bayesian detection rate P (I|A) will be dominated by
P (A|Ī), i.e., the false positive rate [2]. If the false positive rate is not the
same order of magnitude as the a priori probability of having an intrusion,
P (I), or lower, the denominator in Equation (16) will be governed by the false
positive rate P (A|Ī). This confirms how the Bayesian detection rate is greatly
influenced by the false positive rate, and shows us that in order to have a high
Bayesian detection rate we need to lower the false positive rate as much as
possible.

In [2], Axelsson presented a realistic example in which he showed that in order
to have a significant Bayesian detection rate we need to reduce the false pos-
itive rate to around 10−5, while maintaining a relatively high detection rate.
It is easy to see from Figure 8 that McPAD achieves this goal in particular in
case of shell-code attacks and polymorphic CLET attacks. Following Axels-
son’s example [2], assume P (I) = 1−P (Ī) = 2 ·10−5. McPAD has a detection
rate around 95% for shell-code attack packets, at a false positive rate of 10−5.

2 This may not be true in case of large-scale distributed attacks. However, such
attacks are rare and limited to a defined, usually relatively short, period of time.

34

Therefore, P (A|I) = 0.95, and P (A|Ī) = 10−5. In this case the Bayesian detec-
tion rate is P (I|A) = 0.65. On the other hand, PAYL has detection rate equal
to zero at a false positive rate of 10−5, and therefore the Bayesian detection
rate is zero. If we consider that the detection rate of PAYL is around 0.32 at
a false positive rate of 10−3, in this case we have a Bayesian detection rate for
PAYL equal to P (I|A) = 0.006. Even if we had 100% detection rate at 10−3,
the Bayesian detection would be only P (I|A) ≃ 0.02. This confirms that we
need to maintain a high detection rate at very low false positive rates, in order
to increase the Bayesian detection rate. We showed that McPAD meets this
requirement.

6 Conclusion and Future Work

In this paper we presented McPAD (Multiple-Classifier Payload-based Anomaly
Detector), a new accurate payload-based anomaly detection systems that con-
sists of an ensemble of one-class classifiers. We showed that our anomaly de-
tector has a high detection accuracy for shell-code attacks and polymorphic
attacks generated using the morphing engine CLET [8]. This holds true even in
the case of very low false positive rates. We showed that this is fundamental in
order to obtained a significant Bayesian detection rate P (Intrusion|Alarm),
i.e., the probability of having an intrusion attempt given that the Intru-
sion Detection System (IDS) raised an alarm. We also compared McPAD to
PAYL [35], and we showed that PAYL is not able to detect network attacks
at very low false positives rates. Therefore, we showed that McPAD provides
a much higher Bayesian detection rate, compared to PAYL.

Furthermore, we experimented with advanced polymorphic blending attacks
and we showed that in some cases even in the presence of such sophisticated
attacks and for low false positive rates our IDS still has a relatively high
detection rate. On the other hand, PAYL has a detection rate for polymor-
phic blending attacks close to zero, at very low false positive rates. In case
of advanced Polymorphic Blending Attacks (PBAs) McPAD provides more
robustness compared to PAYL, although it does not perform well when the
attacker tries to spread the PBA over several attack packets. We intend to
address the problem of further improving the robustness of McPAD against
PBAs in our future work. In particular, we will study the effectiveness of ex-
tracting additional features for modeling the normal traffic. For example, an
additional feature may be the total length of TCP flows, which may allow
us to detect attempts of spreading polymorphic blending attacks over a large
number of packets in order to evade detection. Also, adding semantic informa-
tion about the protocol may help improving the model of normal traffic. For
example, it may be possible to train different models of normal traffic for GET
and POST requests, in case of the HTTP traffic. This information is easy to

35

extract and does not add much overhead to the feature extraction process.
On the other hand, having distinct models for different types of requests may
make modeling of the normal traffic more precise, and the classification results
more accurate.

References

[1] I. Arce. The shellcode generation. IEEE Security and Privacy, 2(5):72–76,
2004.

[2] S. Axelsson. The base-rate fallacy and its implications for the difficulty of
intrusion detection. In CCS ’99: Proceedings of the 6th ACM conference
on Computer and communications security, pages 1–7, 1999.

[3] A. P. Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159,
1997.

[4] R. Brunelli and D. Falavigna. Person identification using multiple cues.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(10):955–
966, 1995.

[5] R. Chinchani and E.V.D. Berg. A fast static analysis approach to de-
tect exploit code inside network flows. In Recent Advances in Intrusion
Detection (RAID), 2005.

[6] L. P. Cordella, A. Limongiello, and C. Sansone. Network intrusion detec-
tion by a multi-stage classification system. In Multiple Classifier Systems
(MCS), pages 324–333, 2004.

[7] C. Cortes and M. Mohri. Confidence intervals for the area under the
roc curve. In NIPS 2004: Advances in Neural Information Processing
Systems, 2004.

[8] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic
shellcode engine using spectrum analysis. Phrack Issue 0x3d, 2003.

[9] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic
feature clustering algorithm for text classification. Journal of Machine
Learning Research, 3:1265–1287, 2003.

[10] T. G. Dietterich. Ensemble methods in machine learning. In Multiple
Classifier Systems (MCS), 2000.

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,
2000.

[12] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric
framework for unsupervised anomaly detection: Detecting intrusions in
unlabeled data. In D. Barbara and S. Jajodia, editors, Applications of
Data Mining in Computer Security. Kluwer, 2002.

[13] P. Fogla and W. Lee. Evading network anomaly detection systems: formal
reasoning and practical techniques. In CCS ’06: Proceedings of the 13th
ACM conference on Computer and communications security, pages 59–68,

36

2006.
[14] P. Fogla, M. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee. Poly-

morphic blending attack. In USENIX Security Symposium, 2006.
[15] G. Giacinto, R. Perdisci, M. Del Rio, and F. Roli. Intrusion detection in

computer networks by a modular ensemble of one-class classifiers. Infor-
mation Fusion, 9(1):69–82, 2008.

[16] G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for
intrusion detection in computer networks. Pattern Recognition Letters,
24(12):1795–1803, 2003.

[17] K. L. Ingham and H. Inoue. Comparing anomaly detection techniques
for HTTP. In Recent Advances in Intrusion Detection (RAID), 2007.

[18] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining clas-
sifiers. IEEE Transactions Pattern Analysis and Machine Intelligence,
20(3):226–239, 1998.

[19] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for
network intrusion detection. In ACM Symposium on Applied Computing
(SAC), 2002.

[20] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.

[21] E. Leopold and J. Kindermann. Text categorization with support vector
machines. How to represent texts in input space? Machine Learning,
46:423–444, 2002.

[22] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The
1999 darpa off-line intrusion detection evaluation. Computer Networks,
34(4):579–595, 2000.

[23] M. V. Mahoney and P. K. Chan. An analysis of the 1999 darpa lincoln
laboratory evaluation data for network anomaly detection. In Recent
Advances in Intrusion Detection (RAID), 2003.

[24] J. McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln Laboratory. ACM Transactions on Information and System
Security, 3(4):262–294, 2000.

[25] J. McHugh, A. Christie, and J. Allen. Defending yourself: The role of
intrusion detection systems. IEEE Software, pages 42–51, Sept./Oct.
2000.

[26] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class svm
classifiers to harden payload-based anomaly detection systems. In ICDM
’06: Proceedings of the Sixth International Conference on Data Mining,
pages 488–498, 2006.

[27] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled
data using clustering. In ACM CSS Workshop on Data Mining Applied
to Security, 2001.

[28] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and RC Williamson.
Estimating the support of a high-dimensional distribution. Neural Com-
putation, 13:1443–1471, 2001.

37

[29] F. Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, March 2002.

[30] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo.
On the infeasibility of modeling polymorphic shellcode. In CCS ’07: Pro-
ceedings of the 14th ACM conference on Computer and communications
security, 2007.

[31] D. M. J. Tax. One-Class Classification, Concept Learning in the Absence
of Counter Examples. PhD thesis, Delft University of Technology, Delft,
Netherland, 2001.

[32] D. M. J. Tax and R. P. W. Duin. Combining one-class classifiers. In
Multiple Classifier Systems (MCS), 2001.

[33] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract
payload execution. In Recent Advances in Intrusion Detection (RAID),
2002.

[34] V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[35] K. Wang and S. Stolfo. Anomalous payload-based network intrusion de-

tection. In Recent Advances in Intrusion Detection (RAID), 2004.
[36] K. Wang and S. Stolfo. Anomalous payload-based worm detection and

signature generation. In Recent Advances in Intrusion Detection (RAID),
2005.

[37] K. Wang and S. Stolfo. Anagram: A content anomaly detector resistant
to mimicry attack. In Recent Advances in Intrusion Detection (RAID),
2006.

38

